am sitting at a cross road as I start to write this article. Should I emphasize the similarities or the differences between epidemiologists who align themselves with animals and those who align themselves with people? Both are important to consider. Let’s start with the similarities.
From the Board

As you can see from the front cover of this Newsletter, CSEB is sporting a new logo. The logo that you see was the grand winner of the first ever, CSEB logo contest. The voting originated at the CSEB booth during the conference in Toronto and when the votes were tallied after the conference, there was a tie! The tie was ultimately broken during the next round of voting, conducted via the internet. Thanks to all who participated.

This issue of the CSEB Bulletin is focusing on veterinary epidemiology. Craig Stephen, Centre for Coastal Health, BC and Andria Jones, Memorial University of Newfoundland provide their views on the veterinary and human epidemiology, while Scott McEwen, the Department Chair, Ontario Veterinary College at the University of Guelph discusses the programs offered by the Department of Population Medicine.

The North American Congress of Epidemiology is being held in Seattle, Washington from June 21-24, 2006. CSEB is a co-sponsor of this conference and responsible for organizing a symposium. We are very pleased that Dr. Loraine Marrett has agreed to chair a symposium entitled “Chronic disease in Canadian Aboriginal populations: Current issues”. Speakers include Drs. Gail Eyssen and Tony Hanley from the University of Toronto with a talk entitled “Colorectal cancer and metabolic syndrome: An emerging issue for Aboriginal health?”, Dr. Loraine Marrett from Cancer Care Ontario with a talk entitled “Cancer survival in Ontario First Nations people: Another health disadvantage?”, and Dr. Grace Egeland from McGill University with a talk entitled “Diet and the Inuit: A world in transition and its potential impact on chronic disease”. This symposium will no doubt prove to be a very interesting session.

CSEB Board activities are less obvious during the non-conference years, when conference preparations and new Board elections are not imminent. At the Board meeting in September 2005, there was a discussion about the Board’s raison-d’être. Although CSEB’s ‘bread and butter’ activities (such as the Newsletter, job postings, sponsoring student events, and the biennial conference) continue to carry on as usual, Board members discussed the issue of what other activities CSEB Board members could/should be involved with. There did not seem to be any easy answers, but it was agreed that the question is important and deserves further attention. At the heart of the issue is a question about membership: what can be done so that epidemiologists and biostatisticians in Canada are interested in joining CSEB. We are
a small-budget organization, so we obviously cannot be all things to all people. As an organization, we need to prioritize what activities we want to spend our limited resources on, and work towards making these activities high quality. The Board plans to initiate some strategic planning activities this year to help shape the future of CSEB. We welcome your thoughts on the strategic directions that you would like to see evolve.

As always, we encourage any of the readers to share ideas for future issues, or contribute articles. Please e-mail Wendy Thompson, the managing editor, or any of the Board members with ideas or articles (wendy_thompson@phac-aspc.gc.ca).

Student News

Hello fellow students!

There are a number of events being planned for the next couple of years including student activities for the EpiCongress 2006 in Seattle (June 2006) and 4th Biennial CSEB National Student Conference in Calgary (Spring 2007).

At this time, I would also like to draw your attention to our 18th Biennial CSEB Central Region Student Conference. This year, the conference is being hosted by James Valcour and his organizing team at the University of Guelph.

Please mark your calendars!!

Event: 18th Biennial CSEB Central Region Student Conference
Date: June 9-10, 2006
Place: Ontario Veterinary College, University of Guelph, Guelph, ON
Website: www.ovc.uoguelph.ca/conference/cseb2006/

Hope to see you there!

Minh T. Do
CSEB Student Representative

Arrivals and Departures

Arrivals

Andria Jones is a veterinarian and epidemiologist (DVM and PhD from the Ontario Veterinary College at the University of Guelph). She recently joined the faculty in the Division of Community Health and Humanities (Faculty of Medicine) at Memorial University of Newfoundland, where she teaches Epidemiology and Public Health at the undergraduate and graduate levels. Her research interests include the public perception of drinking water in Canada, and the epidemiology of foodborne, waterborne and zoonotic diseases. Andria is a welcome addition to the CSEB Bulletin and we look forward to getting to know her better over the upcoming year.

Departures

Sharon Buehler has been an active member of the CSEB for many years and has a long history as an associate editor with the CSEB Bulletin. In order to spend more time with her husband, Sharon has decided to pull back from some of her extracurricular activities. Sharon was great to work with and her ideas were always free-flowing. We thank Sharon for her tremendous contribution over the years and know she will try to continue sending her articles to the Bulletin wherever she may be. Sharon, you are in our hearts and we wish you all the best in 2006.
Infectious disease (ID) models explicitly represent patterns of infectious disease transmission in a mathematical framework, allowing one to study mechanisms that underlie observed trends. We discussed the use of such models to study the true burden of an infectious agent. Hepatitis A is a contagious disease caused by the hepatitis A virus (HAV) and can result in a debilitating, multi-week illness in older children and adults. Transmission occurs through the fecal-oral route either by ingestion of contaminated food or water, or direct contact with an infected person. In Canada, HAV is a notifiable disease although the extent of under-reporting among reported cases is unknown.

Among the classes of ID models, catalytic models are described as catalytic because of their structural similarities to equations commonly used in studies of chemical reactions (Liu et al., 2001). They have been used to estimate incidence of common childhood infections (Griffiths 1974; Anderson, Grenfell & May, 1984; Anderson & May, 1984, 1985) and transmission rates of parasitic infections (Liu et al., 2001), to study epidemiological patterns of filarial infection (Michael et al., 1998), and evaluate the extent of underreporting in HAV case notification data in the United States (Armstrong and Bell, 2002), among others. In the simplest form, a catalytic model can be briefly described below.

Let $\lambda(a)$ be the age-specific force of infection (i.e., the probability per unit time that individuals of age a become infected) and $F(a)$ the age-specific cumulative risk of infection (i.e., the proportion of individuals of age a who have been infected at some point in the past). Thus $[1 – F(a)]$ denotes the age-specific proportion of individuals remaining at risk. The rate of change of $F(a)$ equals the force of infection $\lambda(a)$ times the proportion individuals at-risk $[1- F(a)]$ (Meunsch 1959), that is;

$$\frac{dF(a)}{da} = \lambda(a)[1- F(a)]. \hspace{1cm} [1]$$

Solving for the cumulative risk $F(a)$ in the above differential equation yields an expression for $F(a)$:

$$F(a) = 1 – \exp \left[– \int_0^a \lambda(a) da \right] \hspace{1cm} [2]$$

Following HAV infection, immunoglobulin antibodies develop and persist indefinitely. Thus the cumulative risk $F(a)$ equals the proportion of individuals with HAV antibody by age A (i.e., seroprevalence), often estimated using data from seroprevalence survey (e.g., conducted at time T).

$$Pc(A, T) = 1 – \exp \left[\int_0^a \lambda(a,t) da \right] \hspace{1cm} [3]$$

Expression [3], an expanded version of [2], relates seroprevalence data to the force of infection $\lambda(a)$.

$$\lambda(a,t) = \frac{\beta* I(a)}{P(J | a)*[1 – P_{all}(a)]}*G(t) \hspace{1cm} [4]$$

In the above expression, the age-specific and time-dependent $\lambda(a, t)$ varies according to: 1) the average incidence of infection $I(a)$, 2) the proportion of symptomatic cases (e.g., jaundice) given infection ($P(J | a)$), 3) the proportion of at risk individuals in the population $[1 – P_{all}(a)]$ where $P_{all}(a)$ denoting the proportion of all Canadians with HAV antibodies, and 4) the variation of the incidence over time $G(t)$. The parameter β denotes the extent of under-reporting of infected cases due to sub-clinical symptoms or reporting failure.

Operationally, the steps we used to fit a catalytic model are as follows:

1. Obtained HAV seroprevalence data from a systematic review of seroprevalence studies involving Canadian subjects;
2. Obtained HAV incidence data from the National Notifiable Disease Registry of Canada;
3. Fitted the catalytic model by minimizing the distance between the observed seroprevalence and the modeled estimates.

4. Derived estimates of under-reporting and a parameter denoting the average percent change in annual incidence (e.g., an exponential function of \(G(t) \) in expression [4]). Subsequently, estimated the true HAV incidence and prevalence in a birth cohort of Canadians.

In our application, the seroprevalence in Canadian-born individuals was approximately 1% in ages 8-13, 1-6% in 20-24, 10% in 25-29, 17% in 30-39, and increased subsequently. The average annual reported incidence rate was 6.2/100,000 persons (range 4.3-9.5) in 1980-1989, and 7.72/100,000 persons (5.9-10.8) in 1990-1997, indicating that Canada is a low endemic country.

Between 1980 and 1997, the catalytic model estimated an average of 12,485 (95% CI [8,080 - 85,611]) new cases of HAV per year in Canada; 7.73 [4.2 - 67.3] times the reported average annual incidence of 1,954 cases. For a typical birth cohort of 403,434 individuals born in 1990, the model predicted 13,261 individuals with HAV antibody by age 29, corresponding to a prevalence of 5.8% in 2019.

Our results are consistent with a similar modeling study estimating the extent of under-reporting of HAV in case notification data in the United States (Armstrong et al, 2002). For the US, the true burden of infection was estimated to be 10.4 times the number of reported HAV cases.

The potential for infectious disease epidemics in developed countries has been an emerging threat in recent years. Estimating the true burden of infection is a sensible first step toward effective control strategies. In most infectious diseases, under-reported cases contribute to a silent transmission although they did not cause an obvious burden to public health. For example, a recent WHO study of H5N1 flu in Vietnam reported that a much larger number of asymptomatic cases were not detected compared to those reported cases. We hope the use of catalytic model offers a way to better quantify the true scope of infectious disease transmission in the affected populations.

Bay Z Pham
Minh T Do
Andrea M Anonychuk
University of Toronto
GlaxoSmithKline Canada

References

Epidemiologists, whether dealing with people or animals, are interested in health and disease phenomena in nature and at a population level. Both apply a range of methods from field epidemiological studies of disease outbreaks to theoretical modeling. They speak the same epidemiological language and learn the same methodological lessons. I remember being interviewed for my first job as an epidemiologist at a human infectious diseases epidemiology unit. At my interview my future boss, who was reluctant to interview a vet, asked how in the world I knew how to interpret a pattern of hepatitis in the immigrant population in BC. Whilst I gave her a good answer on infectious disease dynamics, I dared not tell her it was no different than the patterns seen for diseases of feedlot cattle where “immigrants” from outside farms come into the central feedlot. The factors that control disease patterns respect no species boundaries and the similarities of disease patterns far outweigh the differences.

Veterinary epidemiologists do, however, have some unique perspectives. The veterinary perspective is grounded in an ethos of problem solving. Most of the graduate degrees I have been associated with in veterinary schools have emerged from a pragmatic problem. Don’t misunderstand me, there has been ground breaking work in epidemiology by veterinarians in the areas of theoretical epidemiology and methodological development, but many veterinary epidemiologists do not stray too far from those people who need to make a health management decision. This has allowed veterinary epidemiologists to make outbreak investigation, surveillance, clinical trials and the like the subjects of graduate research, preventing analytical epidemiology from overwhelming scholarly activity to the same extent that it has for epidemiologists working with human diseases. The second, and perhaps most important, difference is the holistic view of health seen by veterinary epidemiologists. Veterinarians, as the sole health provider for all species other than humans, have needed to develop an approach to health care that is inclusive of a population health perspective. Whether a clinician or an epidemiologist, veterinarians have always had to consider more than pathophysiology or biostatistics when examining and managing their patients. Socio-economics, environmental management and ethics inform clinical management decisions on the fate of animals and animal populations as much as hematology or pathology. This holistic perspective is magnified when one enters the realm of veterinary epidemiology and has helped Canadian epidemiologists to become leaders in fields such as ecosystem health.

How can a human health researcher exploit the similarities and differences that distinguish veterinary epidemiology? First, there is a cadre of veterinary epidemiologists who are not “species-ists;” in other words they do not define their activities based on the species of concern, but rather they have the interests and skills to think about and investigate how diseases behave in the real world, regardless of the species involved. These people can bring with them all the epidemiological bells and whistles you might need for your research questions. Second, there are veterinarians who are interested in comparative medicine. Examining common features of the behaviour of health and disease across species has the capacity to uncover fundamental truths and thus strengthen our understanding of what makes things healthy or ill. Third, there are epidemiologists who deal only with animals. These professionals can help seek biological analogy to human conditions by carefully studying similar conditions in animals.

I have provided only a very broad brush description of veterinary epidemiology, using crude generalizations and a very biased viewpoint. Despite this, I hope that I have convinced you of one key truth; there is no distinction between veterinary and human epidemiology. Rather it is a continuum with significant overlaps in interests, skills and capabilities. I encourage you to explore how research efficiencies can be gained by creating research that spans species and perspectives. For those interested in exploring this field in more detail, all of Canada’s veterinary schools have internationally respected programs in epidemiology.

Craig Stephen
Centre for Coastal Health, Nanaimo, BC
Update from the Canadian Institutes of Health Research
Institute of Population and Public Health (CIHR-IPPH)

The CIHR-Institute of Population and Public Health is pleased to be partnering with selected organizations (Statistics Canada and the World Health Organization in the case of the Analysis of World Health Survey Data initiative) and the Public Health Agency of Canada’s Office of Public Health Practice (in support of a joint masters of public health award program) to launch two requests for applications, of interest to CSEB members. Please visit the CIHR-IPPH web site for further information.

(http://www.cihr-irsc.gc.ca/e/13777.html)

Analysis of the World Health Survey Data

In 2002-03, the World Health Organization (WHO) undertook the World Health Survey (WHS) (http://www.who.int/healthinfo/survey/en/), which involved the participation of seventy countries (http://www.who.int/healthinfo/survey/countries/en/index.html). A sub-set of these surveys were completed in 2004. The survey was implemented in an effort to strengthen the evidence base needed by policy makers to improve programs and policies that have an impact on the health of populations and health systems. The WHS provides comprehensive baseline information on the health of populations and on the outcomes associated with the investment in health systems and their functioning. The purpose of this CIHR-IPPH/WHO/Statistics Canada initiative is to provide an enhanced opportunity for expert analysis of the WHS data by Canadian researchers, together with international research collaborators. The maximum amount awarded for a single grant is $40,000 per annum for up to one year, including equipment (e.g. data infrastructure costs.)

Public Health Professional Master’s Awards Program

Jointly issued by the Public Health Agency of Canada’s Office of Public Health Practice and the CIHR-IPPH, the purpose of the Public Health Professional Master’s Awards Program aims to strengthen public health capacity in Canada by supporting the current and next generation of public health policy makers and practitioners. The program will thus build capacity for effective knowledge translation and use of research evidence by the public health system. The program will be administered by CIHR and will provide a number of Master’s awards based on recommendations made by Canadian institutions offering a public health professional Master’s degree program. By “public health professional Master’s degree program”, we mean primarily course-oriented programs that include a practicum and are intended to prepare graduates for the practice of public health. The maximum amount awarded for a single award is $17,500 per annum, for up to 2 years (full-time status) and up to 4 years (part-time status), as defined by the candidate’s institution.

Erica Di Ruggiero,
CIHR, Institute of Population and Public Health

“You’re a vet/veterinary epidemiologist, but you study humans?...”

It’s a question that I get asked regularly, and I can see where the confusion might arise. After all, veterinarians treat animals, so the natural extension is that veterinary epidemiologists study animal populations... right?

In fact, it’s a little more complicated than that. Upon graduation, veterinarians take an oath whereby we solemnly swear, among other things, to use our knowledge and skills “...for the promotion of public health and the advancement of comparative medical knowledge”.1 Hence, veterinarians are actually advocates of both animal and public health.

In most instances, veterinary epidemiologists are veterinarians, in addition to being epidemiologists. Where some people may draw distinct lines between “veterinary” and “human” epidemiologists, I have trouble doing so.
Epidemiology is after all, the study (logos) of what is upon (epi) populations (demos) – notice the lack of species specification. I personally think a population is a population (be it cats, cows or humans) and generally speaking, all epidemiologists have the same goal in mind: the reduction in severity or frequency of disease and the promotion of health. But, in writing about “veterinary epidemiology” for this issue of the CSEB newsletter, I will maintain the distinction, and will attempt to show how “veterinary epidemiologists” contribute to the overall public health effort.

Human health is inextricably linked to animal health. Consider for example, that 75% of the new diseases affecting humans over the last decade have been caused by zoonotic pathogens, either from animals or animal products.2 Humans and animals share a variety of environments, thus, they share the ability to spread diseases to one another. Pets, wildlife populations, animal production practices and the food industry are a few daily examples of our interactions with the non-human animal population. By virtue of our training, veterinarians can provide an in-depth understanding of those human-animal relationships, as well as their interactions with the disease agents and environments that ultimately produce disease. It is with this perspective that veterinarians can bring something new to the research table.

Veterinarians and veterinary epidemiologists are also trained to consider far more than the pathophysiology of a disease. Our training emphasizes “the preventive, economic and population aspects of animal health and production, as they relate to human health and well-being.”3 Hence, the veterinary epidemiologist’s training makes her a natural (if not always obvious) member of the team of diverse professionals that are essential to optimally study human health and disease.

So what does a veterinary epidemiologist study? A cursory glance at the research interests of faculty and graduate students in most vet schools across North America (and probably, the world) shows a variety of epidemiological research areas. The most obvious perhaps, is animal health management. This in itself has an impact on public health. Consider as one example, the dependence of residents of developing countries on livestock for their nutrition, clothing, draft power and economy. Veterinarians Without Borders is a reminder of this relationship, being an organization that works to promote human health through promotion of animal and ecosystem health.4 Similarly, in developed countries, the health and productivity of livestock have direct benefits to the producers, consumers, industry, economy and country. Healthy pets are also likely to promote the emotional wellbeing of many people.

But faculty and graduate students in vet schools all over the world also engage in epidemiological research that has more obvious and more direct impacts on human health. Take for example, some of the research being conducted by my former colleagues at the Ontario Veterinary College as part of the graduate program in Epidemiology: antimicrobial resistance (in a variety of species) and its impact on human health; nosocomial infection associated with dogs visiting human hospital patients; risk assessment of on-farm pathogens and food safety; surveillance and investigation of waterborne disease; methodological approaches to studying infectious disease; climate change; ecosystem-based approaches to human health and community well-being, and zoonotic pathogens, to name just a few.5

Veterinarians are actually advocates of both animal and public health.
By virtue of the holistic nature of their training, their experience and different perspectives, veterinary epidemiologists can further diversify the skills and strengths of the research teams studying human disease. In a world where we increasingly value interdisciplinary approaches to research, might I humbly remind readers to consider the “veterinary” epidemiologist in building your research teams – you can find us all over the world in government, academia, research and clinical practice (probably explaining: “… actually no, epidemiology is not the study of skin, but yes, I am a vet that studies human health…”).

Andria Jones
Memorial University of Newfoundland
(references to follow on page 11)

Graduate Epidemiology Programs in the Department of Population Medicine, Ontario Veterinary College, University of Guelph

The Department of Population Medicine emphasizes a quantitative, holistic approach to the understanding of health, the prevention and control of disease in domestic animal populations and zoonotic disease in humans. We thus address the broad disease- and health-related implications of animal ownership, utilization and stewardship, as well as those issues related more directly to animal disease and its veterinary management, and the impacts of animals on human health.

We offer three graduate programs in Epidemiology: research (thesis) MSc, coursework MSc and PhD. The department also offers a variety of graduate courses in epidemiology, statistics, zoonotic disease and food safety.

The coursework MSc includes the research course “Project in Epidemiology”. The intent of this course is to provide training in the collection, analysis and interpretation of epidemiologic data. In our thesis master’s program, in contrast, it is our intent, while providing training in numerical methods, to expose the candidate more directly to research methodology.

The Ph.D. program in Epidemiology is aimed at the preparation of highly skilled individuals with advanced analytic and research abilities and the personal attributes that position them for a leadership career in health management, public health or epidemiology, whether in academia, industry, or research. We are particularly concerned that during the course of their training these individuals should develop and clearly exhibit the capacity for independent thought and the ability to design and effectively execute research that appropriately and effectively tests well-formulated hypotheses.

Further information available at: http://www.ovc.uoguelph.ca/popmed/graduate_studies.shtm

Scott McEwen
OV, University of Guelph

Veterinary Schools in Canada
University of Guelph, Ontario Veterinary College: http://www.ovc.uoguelph.ca/
University of Montreal, Faculty of Veterinary Medicine: http://www.medvet.umontreal.ca/
University of Prince Edward Island, Atlantic Veterinary College: http://www.upei.ca/~avc/
University of Saskatchewan, Western College of Veterinary Medicine: http://www.usask.ca/wcvm/
Calendar of Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Place</th>
<th>Conference</th>
<th>Abstract Deadline</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 26-29</td>
<td>Tampa Bay, FL</td>
<td>International Biometric Society Eastern North American Region Spring Meeting</td>
<td>passed</td>
<td>www.enar.org</td>
</tr>
<tr>
<td>Apr 1-5</td>
<td>Washington, DC</td>
<td>American Association for Cancer Research 97th Annual Meeting</td>
<td>passed</td>
<td>www.aacr.org/</td>
</tr>
<tr>
<td>May 6-8</td>
<td>Montreal, QC</td>
<td>CBCRA Reasons for Hope 4th Scientific Conference</td>
<td>passed</td>
<td>www.breast.cancer.ca</td>
</tr>
<tr>
<td>May 28-31</td>
<td>Vancouver, BC</td>
<td>The 97th Annual Canadian Public Health Association Conference</td>
<td>passed</td>
<td>www.cpha.ca/english/conf/</td>
</tr>
<tr>
<td>May 28-31</td>
<td>London, ON</td>
<td>34th Annual Meeting of the Statistical Society of Canada</td>
<td>passed</td>
<td>www.ssc.ca</td>
</tr>
<tr>
<td>Jun 4-7</td>
<td>Montreal, QC</td>
<td>Genomics & Public Health: 4th International DNA Sampling Conference</td>
<td>Mar 15/06</td>
<td>www.humgen.umontreal.ca/events/</td>
</tr>
<tr>
<td>Jun 9-10</td>
<td>Guelph, ON</td>
<td>18th Biennial CSEB Central Region Student Conference</td>
<td>Mar 31/06</td>
<td>http://www.ovc.uoguelph.ca/</td>
</tr>
<tr>
<td>Jun 20-21</td>
<td>Seattle, WA</td>
<td>Society for Pediatric and Perinatal Epidemiologic Research</td>
<td>passed</td>
<td>www.sper.org/AnnualMeeting.htm</td>
</tr>
<tr>
<td>Jul 24-28</td>
<td>Torun, Poland</td>
<td>26th European Meeting of Statisticians</td>
<td>May 1/06</td>
<td>www.ems2006.umk.pl</td>
</tr>
<tr>
<td>Jun 27-30</td>
<td>Flagstaff, AZ</td>
<td>International Biometric Society Western North American Region Annual Meeting</td>
<td>TBA</td>
<td>www.wnar.org</td>
</tr>
<tr>
<td>Jul 8-12</td>
<td>Washington, DC</td>
<td>UICC World Cancer Congress</td>
<td>passed</td>
<td>www.2006conferences.org</td>
</tr>
<tr>
<td>Nov 4-8</td>
<td>Boston, MA</td>
<td>American Public Health Association Annual Meeting</td>
<td>passed</td>
<td>www.apha.org</td>
</tr>
<tr>
<td>Nov 12-15</td>
<td>Boston, MA</td>
<td>AACR International Conference on Frontiers in Cancer Prevention Research</td>
<td>TBA</td>
<td>www.aacr.org</td>
</tr>
<tr>
<td>Nov 16-17</td>
<td>Tampa Bay, FL</td>
<td>15th Annual Meeting International Genetic Epidemiology Society</td>
<td>TBA</td>
<td>www.biostat.wustl.edu/~genetics/</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 28</td>
<td>Calgary, AB</td>
<td>CSEB Student Conference</td>
<td>TBA</td>
<td>http://www.cseb.ca/en/students.htm</td>
</tr>
<tr>
<td>May 29-31</td>
<td>Calgary, AB</td>
<td>CSEB Biennial Meeting</td>
<td>TBA</td>
<td>http://www.cseb.ca</td>
</tr>
</tbody>
</table>
Business as Usual

Report from the Treasurer

Annual membership dues generated the bulk of CSEB revenue in 2005. Additional revenue was generated by the CSEB conference held jointly with the Society for Epidemiologic Research in June, 2005.

These revenues were offset by the society’s expenses. Planning for the 2007 CSEB conference in Calgary has already begun, and with it a down payment to secure facilities and engage conference planning consultants. Revenues are also used to update and maintain the CSEB website; write, format, and translate the Society’s newsletter; support secretariat functions, student conferences and student travel stipends, and sponsor speakers at symposia of interest to CSEB members. Many thanks are due to the many people behind the scenes who ensure that these activities all run smoothly.

Barbara Roston, Treasurer

The Congress of Epidemiology
June 21-24, 2006 – Seattle, Washington

From June 21 through 24, 2006 in Seattle, the American College of Epidemiology, the American Public Health Association Epidemiology Section and the Society of Epidemiologic Research are jointly sponsoring the 2006 Congress of Epidemiology. An additional 15 societies, including CSEB, are co-sponsoring or supporting this event. Fourteen societies are presenting symposia highlighting the focus of their expertise, and an additional 23 investigated-initiated symposia will be presented. Abstracts are being solicited on a wide range of topics for the 23 contributed paper sessions, and 1000 poster presentations. Thus, the 2006 Congress will truly showcase the breadth of epidemiology. Special events will include a night at the Seattle Experience Music Project, pre-meeting workshops, “meet the editor session” and breakfast round tables with leaders in the field. See the meeting website (www.epicongress2006.org) for the preliminary program, pre-meeting workshops, and to submit abstracts and register for the meeting.

Important Dates
February 3, 2006 - Abstract submission
February 17, 2006 - Student prize paper submission deadline

March 17, 2006 - Deadline for late-breaker abstracts
June 20 -21, 2006 - Pre-meeting workshops
June 21-24, 2006 - Congress of Epidemiology

Betsy Foxman
2006 Congress of Epidemiology

References
(continued from page 9)

5. Ontario Veterinary College (2006). Department of Population Medicine – Graduate Students. Available at: www.ovc.uoguelph.ca

CSEB Board of Directors
2005-2007

President
Yang Mao yang_mao@phac-aspc.gc.ca
Vice-President
Rebecca Fuhrer rebecca.fuhrer@mcgill.ca
Secretary
Howard Morrison howard_morrison@phac-aspc.gc.ca
Treasurer
Barbara Roston treasurer@cseb.ca
Student Representative
Minh T. Do minh.do@cancercare.on.ca
Members-at-Large
Christine Friedenreich chrisf@cancerboard.ab.ca
Linda Dodds l.dodds@dal.ca
Lise Gauvin Lise.Gauvin.2@umontreal.ca
Cam Mustard cam.mustard@utoronto.ca
Jason Pole j.pole@utoronto.ca
Website
www.cseb.ca
E-mail
feedback@cseb.ca

Members are reminded to forward changes in their contact info to CSEB by e-mail to ensure that our database remains up-to-date. We also encourage members to take advantage of e-mail for receiving news from the society, so make sure your e-mail address is on file with us.